Data Acquisition (DAQ)

Jack Carlton
University of Kentucky

g-2 DAQ (Modified for One Crate Support)

- Retains g-2 hardware, but made more flexible
- Same general process:
 - Communicate with µTCA crate, initialize hardware
 - Read TCP packets from µTCA crate
 - Write to midas data banks

Midas Framework

- C/C++ (mostly)
 package of modules for
 - run control,
 - expt. configuration
 - data readout
 - event building
 - data storage
 - slow control
 - alarm systems
 - Etc.
- Can link with custom software

Hardware Requirements

- Calo 7
- Micro Telecom Computing (µTCA) crate with Modules:
 - Waveform Digitizers (WFD5(s)/Rider(s))
 - Controller (FC7)
 - MicroTCA Carrier Hub (MCH)
 - Advanced Mezzanine Card (AMC)
- "Frontend" computer with available PCle slots for the following...
- Meinberg PCle Clock Card
 - Custom connector
- 10 Gigabit Ethernet Network Interface Card (10GbE NIC)
 - SFP+ connectors

Software Requirements

- "Frontend" computer needs to be running Redhat-Enterprise Linux 7 (RHEL7)
 - Examples: Scientific Linux 7 (SL7), CentOS 7
- Midas
- Various other open source software libraries (root, boost, cactus, etc.)
- Some custom software libraries (DAQ frontend code, unpacking libraries, etc.)
- Software installation completely handled by <u>installer</u> on RHEL7 systems

Installation, in a perfect world:

[1] git clone
git@github.com:PIONEER-Experiment/g
m2daq-installer
[2] ./install.sh

- [3] source ./setup environment.sh
- [4] ./start midas webpage.sh

Data Output

- Data is output "raw" in midas "CR" data banks
 - Written to run{#}.mid.lz4 files by mlogger
- Unpacked C++ data structure using <u>unpacking library</u>
 - Custom analyzers can import unpacking library
 - Unpacking library include in installer

Online Database (ODB)

- GUI on midas webpage
 - Also available command line
- Allows for "on the fly" adjustments between runs
- Built in configurations:
 - Midas webpage
 - Logger write location
 - Webpage update rate
 - o Etc.
- Custom configurations
 - Configure hardware
 - o etc.

Custom Software

- Can write "clients" that connect to midas experiment
 - Python
 - o C++

- Allows for user to write software to fit their needs, for example:
 - Data Quality Monitor
 - Offline Analysis
 - Automatic ODB management

Future Projects (Things We're Working On)

Ensuring UW machine has running DAQ before PSI beamtime

 Improve DQM framework to be more adaptable using midas, unpacking, and ZeroMQ libraries

- Direct communication between WFDs/FPGAs and CPU/GPU using PCIe communication
 - Avoids the need for µTCA crates
 - Speeds up data transfer rate (PCle3x8 = 8GB/s = 64 Gb/s > 10 Gb/s)
 - Possibility for direct communication to GPU (faster data processing)